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Abstrac~ — Finite, boundary, and hybrid element approaches are pre-

sented as numerical methods for computing electromagnetic (EM) fields

inside Iossy dielectric objects. Tfrese techniques are implemented as com-

puter algorithms for solving tbe Maxwell eqnations in heterogeneous

media in three dimensions. Algorithm verification takes the form of

comparisons of test cases with analytic solutions. Computed results for
each technique are in good agreement with exact sohrtious, especially in

the light of the coarse computatiouaf grid resolutions used. Implementation

was in Fortran on a moderate-sized computer (MicroVax H). The basic

problem formulation is quite gener~ however, it has direct application in

hyperthermia as a cancer therapy where the EM fields produced inside the

patient by external sources are of interest. An example of the application

of these numerical methods in a three-dimensional clinical setting is

shown.

L INTRODUCTION

I NTEREST IN USING numerical analysis to extract a

more complete understanding of the capabilities of

electromagnetic (EM) devices for producing hyperthermia

in cancer patients has increased dramatically within the

last several years [1], [2]. Such analyses can be performed

via numerical simulations of hyperthermia cancer treat-

ments. The simulation process can be considered a two-step

procedure: (1) compute the energy deposition produced by

the heat source and (2) compute the thermal redistribution

due to heat conduction and blood perfusion. While the

later is generic to all heat delivery systems, the first proce-

dure is dependent on the specific source under considera-

tion. Due to the widespread use of the EM field as such a

heat source (e.g. see [3]-[5]), numerical solution of the

Maxwell equations in tissue (a lossy, heterogeneous

medium) is of particular interest to hyperthermia re-

searchers. While our motivation is due to interest in the

hyperthermia problem, the approaches described herein
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are quite general and applicable to other problems involv-

ing heterogeneous lossy dielectric objects.

Currently, we are developing numerical methods for

calculating electromagnetic fields induced in the body by

various EM source arrangements [6]–[10]. Several clinical

devices have been modeled as boundary value problems, in

which case the finite element method (FEM) with simple

linear and bilinear elements has been employed to solve

the Maxwell equations [6], [8], [10]. The details of the

patient interior have been preserved by generating finite

element grids from CT scans of actual cancer patients. A

number of clinical settings, however, result in electromag-

netic problems which are fundamentally unbounded. For

these situations a hybrid element method (HEM) has been

devised where finite elements, which are used inside the

heterogeneous patient, are coupled to boundary elements,

which are used on the patient surface and detached EM

source [7]. Thus far, all of our results have been restricted

to two dimensions, where both the transverse magnetic

and transverse electric cases have been studied. Other

numerical approaches to solving the Maxwell equations in

the context of two-dimensional hyperthermia treatment

simulation have been reported, and examples of such are

[11]-[13].
While these two-dimensional computed results have been

informative and agree with limited available data, there

exists a need for detailed three-dimensional solutions of

the Maxwell equations in hyperthermia treatment simula-

tions. Since the cross-sectional dimensions of many treat-

ment situations are on the order of the longitudinal dimen-

sion, the propriety of making two-dimensional assumptions
remains an open question. Full three-dimensional solu-

tions are a required component in establishing the degree

of validity of such two-dimensional assumptions. Further,

some phenomena, such as resonances in the body extremi-

ties or effects of longitudinal tissue variations, which may

play an important role in understanding the capabilities of

certain EM therapy devices, cannot be readily studied with

two-dimensional models, but must be addressed with

three-dimensional simulations. Finally, since the physical

problem of interest is truly three-dimensional due to the
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vector nature of the EM field and the arbitrary tissue

variation in all directions, the most realistic and accurate

simulations will result from three-dimensional models.

Three-dimensional solutions of EM fields induced in

biological tissue have been reported in the literature. A

scattering formulation resulting in domain integral equa-

tions which were solved via the method of moments has

been implemented and the details of the approach can be

found in [14]. A number of researchers have used this

approach to calculate EM fields induced in three-dimen-

sional block models of man in the context of potential

health hazards due to EM radiation (e.g. see [14], [15]).

More recently, this same formulation has been used to

analyze the heating of tissue placed between parallel

capacitive plates [16] and to study the power deposition

inside the body but outside the area of direct exposure

[17]. While such studies were based on fully three-dimen-

sional calculations which were pioneering in nature, the

models of man that were used were intended to study gross

effects rather than detailed energy deposition patterns. In

order to increase the computational resolution to that

necessary for making detailed EM field calculations inside

the body, most investigators, to date, have been forced to

make simplifying assumptions to reduce the problem to a

two-dimensional calculation. Studies based on the finite-

difference time-domain method are beginning to emerge

where detailed three-dimensional energy deposition pat-

terns are being calculated inside the body [18], [19].

In previous papers [6], [7] we have presented finite,

boundary, and hybrid element numerical methods for

computing detailed EM fields in the body as three-dimen-

sional formulations, but have only numerically imple-

mented and verified their two-dimensional counterparts.

In this paper, we present the three-dimensional numerical

implementations and verifications of these approaches. We

begin with a discussion of our finite, boundary, and hybrid

element formulations as a review and consolidation of

these approaches, which heretofore have been presented

independently. Some additional details of the three-dimen-

sional implementations of boundary conditions and the

hybrid coupling are also provided. The verification of the

three-dimensional algorithms takes the form of compa-i-
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accuracy, yet without any unusual complications or un-

foreseen problems. Finally, an example which is relevant

to clinical hyperthermia is shown. This work should pro-

vide a foundation upon which detailed three-dimensional

calculations of EM fields induced in the body can be

made.

II. MATHEMATICAL FORMULATION

The second-order partial differential equations in the

quantities of interest—either E or H —which need to be

solved are

1
Vx —vx E+iuc*E=O (la)

i up

1
—vx H+iapH=OVx. (lb)
1(JC*

where

complex amplitude of the electric field,

complex amplitude of the magnetic field,

magnetic permeability,

= c + iu/a, complex permittivity,

permittivity,

electrical conductivity,

radian frequency,
.=.

In addition, a periodic time variation of the form e-zu’ has

been assumed. Since (la) and (lb) are to be enforced in a

heterogeneous medium, certain boundary conditions must

be imposed on E and H at interfaces where the electrical

properties change abruptly. Assuming no electromagnetic

sources are present, these conditions can be stated as

fi. (6 fE1-E;E2)=o (2a)

iix(E1-E2)=o (2b)

fix(H1-H2)=o (2C)

ii. (plH1-p2kT2) =0. (2d)

By expressing (2a) and (2b) in a Cartesian coordinate

system, E on one side of an interface can be conveniently

expressed in terms of its components on the other side

such that

(3)

sons with known analytic solutions. Our purpose here is where the subscripts distinguish the two regions forming

not to provide a study which focuses on comparing the the interface and the unit normal to the interface is ii =

algebraic requirements and accuracy of these three meth- (n., n ~, n=). A similar expression can be written for H

ods, but rather to illustrate that our numerical formula- with p taking the place of C* in (:3). Matrix equation (3) (or

tions can be implemented in three dimensions with good its equivalent for the magnetic field case) is useful for
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implementing the interface boundary conditions regardless where ~. is introduced for notational brevity. Similarly, H

of whether the finite, boundary, or hybrid element method and ii X E can be expanded with +, for a Galerkin solution
is used. In the context of EM-induced hyperthermia, p is of (5 b). Hence, the numerical discretization is completed
effectively constant; hence, H is continuous across inter- with the enforcement of (5) for i = 1 through N (where N
faces. However, since u and c vary with tissue type and is the total number of nodes in the discretization). Sub-
frequency, E is discontinuous at such boundaries. stitution of (6a) and (6b) into (5a) results in the matrix

formulation
A. Finite Element Formulation

The finite element solution is based on the weighted

residual or “weak” form of (la) and (lb) [6]: where A,

[A]{& }=[B]{%} (7)

4’, B, and F comprise the complex submatrices

At, =

(

1 a+, ab,

icop a.v ax )

\ (

1 (?$ (5L#l,

iup az ax )
\

o

0

++,+, da

(( Hv x&V XE +, +(iuc*E@i)=O (4a)

((

1
Vx.

))
—V XH @, +(i~pH@,) =0 (4b)
ltic*

where ( ) indicates integration over the volume and $, are

any set of real scalar weighting functions. In this work +,

are simple piecewise-linear or bilinear functions. An in-

tegral theorem can be used on the first term in (4a) and

(4b), producing

((~ ) )v x H x v@. + (iupH@i) =@ X E@tds (5b)

where i? is the outward-pointing unit normal to the surface

containing the volume. The motivation for performing this
operation is to expose fi X H as the natural boundary

condition for E and, in the dual problem, to expose ii X E

as the natural boundary condition for H.

In this work a Galerkin form of (5a) is used where E

and ii X H are expanded in terms of the weighting func-

tions +, such that

E= $ E,t#I,(x) (6a)
,=1

nX~= ; (ii XH)j@j(x) = ~ ~$J(X) (6b)
J=l ,=1

with i and j running from 1 to N. The dual matrix

formulation for the magnetic field requires the correspond-

ing substitutions into (5 b).

The interface boundary conditions, (2a) and (2b), need

to be accounted for during the assembly of matrix equa-

tion (7). Conceptually, a cut in the finite element grid is

made along an interface between two tissues, but the

Galerkin equation (5a) for a node located on such an

interface still contains integrations over elements on each

side of the boundary. The expression for E, i.e. (6a),

however, requires separate values of Ej on either side of

the interface. Equation (3) provides the relationship be-

tween these two unknowns which is necessary to close the

algebraic system.

In practice, only a single node is used to represent a

point on a tissue interface. Prior to matrix assembly one of

the unknowns at the interface is selected to be retained in

the algebraic system, say the tissue 1 unknowns. Matrix

assembly over elements in tissue 1 proceeds directly since

these unknowns are part of the matrix algebra. However,
during assembly of elements in tissue 2, the unknowns on

this side of the interface are not represented in the column

vector of unknowns to be determined, but their contribu-

tions to the matrix can be included by expressing them in

terms of the tissue 1 unknowns via (3) (for the electric field

case).

The application of (3) during the matrix assembly proce-

dure proceeds in a straightforward manner provided a

suitable nodal normal can be computed. The nodal normal

of Gray [20] and Engleman et al. [21], which is based on

conservation principles, is used. In three dimensions the

nodal normal, hi = ( nX, n ~, n ~), can be computed on finite
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elements as

where

and ( ) indicates domain integration only over the tissue

region for which the normal is being computed.

B. Boundary Element Formulation

The boundary element method used herein is based on

the vector equivalent of Green’s second identity, which can

be stated as

/(Q .VXVx P–’P.Vx VxQ)dV
v

$(= ~PXVXQ– QxVx P). Ada (9)

where P and Q are vector functions with continuous first

and second derivatives throughout V and on S [22]. To

derive the boundary element expression for the electric

field, let P = E and Q = Gtf, where & is an arbitrary unit

vector and G is the unbounded-space Green function

satisfying the Hehnholtz equation with singularity at x
. x’:

v2G+k2G=–8(x– x’). (lo)

In (10), k is the wavenumber of the unbounded space,

which in general is given by k 2 = u2pc *. After some vector

manipulations, it can be shown that

‘@.[vGx(~xfi)-iw(~ Xfi)d da (11)s .

which becomes

~d{8(x-x)E)dV=-jd{( fixE)xVG
v s

+iup(fi XH)G+(fi.E)VG} da (12)

by applying the divergence theorem to the first term on the

left side of (11), and assuming that V is a homogeneous

source-free region with x’ on S. Since d is arbitrary, and a

factor common to all terms, it follows that the boundary

expression for node i located at x’ on S is

aiE,=-~{i@P($X~)G,+(fiJCE)

x vG, +(ii.E)vGl} da (13a)

where ai = /v8(x – xi) dl’ and G, has its singularity at

node i. The dual expression for the magnetic field can be

derived using the same approach and can be shown to be

ai~,=~{i~6*(fiX E)Gi-(fiXH)XVG,

-( fi.ll)vG,} da. (13b)

Relative to the variety of integral forms of the Maxwell

equations that are available, (13a) arid (13b) are computa-

tionally attractive in that only a scalar Green function is

involved, the variables in the integrands are in terms of the

natural boundary conditions for the electric and magnetic
fields, only boundary integration is required, and sources
are represented through equivalent surface fields.

As in the finite element formulation, the field variables

are expressed in terms of the expansions given in (6a) and

(6b) with the understanding that @ is only active on the

boundary. With the variables discretized, N versions of

(13) (where N is the number of boundary nodes) are

enforced using the set of Green functions such that the i th

Green function is singular at the ith node. This process

carried out on (13a) results in the matrix equation

[C]{.%- }=[D]{8} (14)

where D, ~, C, and .% form the complex submatrices:
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with @ = G (x – xi), the unit normal vector i? =
(nX, ~},, n=), F defined by (6b), 8 equal to the Ronecker

delta, and i and j running from 1 to N. The dual matrix

formulation for H is reached using the same procedure

with (13b) as the starting point.

Matrix equation (14) provides a mechanism for calculat-

ing E on some boundary given that A x H is known on

that boundary or, conversely, for calculating A X H given

E. Once both fi x H and E are known over some boundary,

then E can be calculated in the homogeneous region either

inside or outside this boundary via 13a (13b) with a equal

to unity. A similar statement can be made about the dual

matrix formulation involving field variables H and n X E.

The interface conditions for multiple region domains are

accounted for during the assembly of (13a) and (13b) with

the same strategy outlined above for the finite element

approach where the unknowns on one side of the interface

are eliminated as they arise in the matrix algebra by their

counterparts on the other side of the interface via (3).

These conditions, as well as (13a) and (13b) themselves,

require the definition of a nodal normal. In three dimen-

sions, a nodal normal based on surface elements can be

written as ii, = (nX, nYr, n=,) where

1

#

1
n =— nX~, da nY, = —

f
n ~~, dax, ns ns

1
n =—

$
n .q$ da (15)

z, ns

and

n=

This is actually the definition of

by Gray [20], and the expression

(15) via the divergence theorem.

C. Hybrid Element Formulation

the nodal normal posed

in (8) was derived from

The hybrid element method [7] employs the finite ele-

ment method in regions of heterogeneity and the boundary

element method in regions of unbounded homogeneity.

Recall that solution of the Galerkin weighted residual
statement for E (eq. (~a)) via finite elements requires

knowledge of i x H or E over the entire boundary of the

domain of interest. Similarly, (5b) requires that either

A x E or H be known on the boundary. However, many

problems are fundamentally unbounded in that these

quantities can only be specified over the EM source which

in general does not completely enclose the region of

heterogeneity. The boundary element statements ((13a)

and (13b)) provide the necessary relationships between

boundary values of ii X If and E (or i? X E and H). In

the hyperthermia context, these equations are applied in

the homogeneous space, exterior to the patient, but con-

taining the EM source. The boundary of this region also

includes infinity, but kernels of the type found in (13a)

and (13b) can be shown to vanish there [22]; hence, the

only contributions to (13a) and (13b) occur from the

boundary of the patient and source. By integrating along a

path over the patient surface and detached EM source,

unknown patient surface quantities are related to known

source quantities which provide the information necessary

to close the finite element matrix problem on the patient

interior.

In the case where E is known on the detached source,

the hybrid element method begins with the finite element

formulation which provides N + m equations (for the N

nodes comprising the patient interior and the m nodes

constituting the patient surface) for each nodal degree of

freedom:

[221{:}=Exl} ’16)
where B is defined in (7) with length m, Ep are the

unknowns on the patient interior, and El and F1 are the

unknown E and i x H on the patient surface. The

boundary element method provides m + n equations (for

the m nodes on the patient surface and the n nodes on the

source) for each nodal degree of freedom:

[221(:}=[2%1{:} ’17)

where E2 represents the known E and F2 the unknown

fi x H of the source. Inverting the matrix on the left side of

(17) and denoting the partitions for this inverted matrix

with a tilde results in

By taking the top m equations of (18), F1 is eliminated in

(16), thus

Note that the bottom set of equations in (18) is not

explicitly required for solution of (19); however, if F2 is

needed to calculate either the loading on the source or the

electric field exterior to the body, Fz can be computed

from the bottom half of (18) once El is known from

solution of (19).

When fi x H is specified on the source boundary (i.e.,

F2 known), the matrix algebra is similar to the above

except that the bottom set of equations in (18) is needed.
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In this case, (19) becomes

(20)

An alternate approach, which removes the need for the 111. TEST CASES

lower set of equations in (18), is to interchange F2 and E2 In this section the numerical solutions posed in the.- —.. .
m (1’/) such that

Then, the inversion of the matrix on the left side of (21)

can be used to eliminate I’l in (16):

[

All A 12 1{)Ep

A21 z422 – B [~n% - fi12~21] J%

( o

= B [– @12 + 312C221 { F2 } )

(22)

where the tilde notation is again used to represent a

partition of the inverse of the left side matrix in (21). Now

the bottom set of equations in (21) is not explicitly needed

for the solution of (22). If direct solution for the magnetic

field is desired, the same procedure with fix E and H
playing the roles of i x H and E, respectively, can be

used.

The left side matrix resulting (in (19) or (22)) from the

hybrid coupling has an unusual structure. It is largely

sparse owing to the fact that it is largely populated with

FEM equations (assuming Ep > El), but contains a smaller

dense region composed of the algebraic BEM equations.

For direct solution, the half-bandwidth grows to the num-

ber of botiridary nodes (for each nodal degree of freedom),

which rapidly restricts the size of the problem that can be

considered in three dimensions. Further, the bandwidth of

the pure FEM equations typically gets quite lprge in three

dimensions, which has encouraged the use of iterative

solution techniques in straight three-dimensional finite ele-

ment applications. (A general rule of thumb for the pure

FEM case is that the bandwidth goes as N1/2 in two

dimensions and N2/3 in three dimensions, where N is the

total number of nodes in the mesh. Therefore, given a

square mesh with ten nodes on a side, the half-bandwidth

=10 in two dimensions but 100 in three dimension:.) In

this work we have used well-established direct solution

techniques which allowed us to focus on the generation of

a consistent set of algebraic equations with a unique

solution. However, in order to fully exploit the power of

the hybrid approach, careful study of storage and solution

schemes for the hybrid algebraic system of equations is

needed. In particular, iterative Solution techniques such as

conjugate gradient methods deserve close attention.

previous section are compared to analytic sol;tions for two
concentric cylinders of electrically distinct tissues. Three-

dimensional test cases have been examined for each of the

three numerical approaches—(i) the finite element method

(FEM),, (ii) the boundary element method (BEM), and (iii)

the hybrid element method (HElkf)-using two types of

boundary conditions specified on the outer cylinder

boundary-(i) i? x H and (ii) E —and a variety of differ-

ent cylinder radii, tissue electrical properties, and grid

discretizations. The results that are shown here are in-

tended to be representative examples of the type of calcu-

lations made and the accuracy obtained with fairly coarse

grid resolutions (for a more detailed discussion of such
results and a derivation of the analytic solutions, see [23]).

Fig. l(a)–(c) shows FEM, BEM, and HEM results for

the magnitude of E versus radius through the midplane of

finite length cylinders. The concentric cylinders, which

contained electrically distinct meclia (tissues), were excited

at 70 MHz. A known value of fi X H was imposed at the

boundary of the outer cylinder such that H had magni-

tude HO and direction longitudinally parallel to the cylin-

der boundary. The worst-case error in these plots is within

4 percent, 2 percent, and 3 percent of the analytic E for

the FEM, BEM, and HEM, respectively.

Fig. 2 indicates the numerical discretizations that were

used in obtaining the solutions in Fig. 1. For the pure

FEM solution, the grid was constructed with AqJ= 30°,

Ar = 3.125 cm, Az = 10 cm, resulting in cylinder lengths of

50 cm, an outer radius of 25 cm, and an inner radius of

12.5 cm. Analytic values of ii X JY were prescribed at the

boundary nodes comprising the ends of the cylinder con-

figuration. The BEM mesh used AQ = 30° and Aq = 20°

on the inner and outer cylinders while Az varied from 12

cm to 16.5 cm. This nodal spacing generated cylinders that

were 100 cm in length with inner and outer radii of 15 cm

and 25 cm, respectively. As in the FEM case, analytic

values could be imposed at the cylinder ends. However,

since the midplane solution was of interest, the ends of the

cylinders were not discretized (see Fig. 2(b)) —tlhe argu-

ment being that if the cylinders are long enough relative to

the effective radius of the Green function influence, the

ends do not effect the rnidplane solution. Instead, the

nodes that would be required to construct the cylinder

ends (a sizable number, e.g., see Fig. 2(a)) were used to

extend the length of the cylinders and to improve cir-

cumferential resolution.

The effects on the numerical solution of leaving the ends

off the boundary element cylinders are shown in Fig. 3(a)
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Fig. 1. (a) Comparisons of the analytic solution for two infinitely long concentric cylinders with a three-dimensional
numericaf solution for two concentric cylinders of finite length. The excitation frequency was 70 MHz and fi x H was
imposed at R = 25 cm. Two different cases are shown: (i) heart (e, = 89, 0 = 0.93 W lm - 1, surrounded by lung (c, = 40,

0=0.35 Wlm-l ), (ii) bone (c, =10.5, u = 0.02 Q-lm-l) surrounded by muscle (c. = 72, u = 0.89 W1m-l). The FEM
was used with an inner cylinder radius of 12.5 cm as indicated by the dotted vertical line. (b) Same as (a) except that the
BEM was used with an inner cylinder radius of 15 cm. (c) Same as (a) except that the HEM was used with an inner cylinder
radius of 12 cm. The inner cylinder was constructed from finite elements while the outer cylinder was composed of
boundary elements.

and (b). The BEM solution with E imposed at the radius imposed at each cylinder end as in the FEM case. The

of a single cylinder with the same dimensions as the outer correspondifig calculations are plotted in Fig. 3(b) for the

cylinder in Fig. 2(b), but with discretized ends (Arp = 20°, cylinder with the ends removed. The decay in the numeri-

Ar = 5 cm) is displayed in Fig. 3(a). The magnitude of E cal results (relative to the analytic solution) is apparent as

versus radius for five different cross-sectional planes, which the nondiscretized end of the cylinder is approached. None-

begin at the midplane and move toward the cylinder end, theless, the numerical calculations near the midplane with

ii plotted. For these calculations, the analytic solution was or without the cylinder ends discretized are essentially



PAULSENd al.: FINITE, BOUNDARY,AND HYBIuD ELEMENTSOLUTIONS 689

GRID WITH ENDS

(a)

(b)

(c)

Fig. 2. Three-dirtlensionaf test case grids for the (a) finite (FEM), (b)

boundary (BEM), and (c) hybrid (HEM) element methods.

indistinguishable and compare quite well to their analytic

countexart, as shown. In general, we do not recommend

leaving off the ends of the cylinders (which changes the

numerically solved problem); however, by doing so we

were able to find a simple test case with which to explore

three-dimensional discretization errors on a relatively small

computer (MicroVax II).

The HEM solution was achieved with AqI = 40°, Ar = 3

cm, and Az =15 cm in the finite element region, and

Asp = 24°, Az = 15 cm in the boundary element portion of

the mesh which produced cylinders 105 cm in length with

inner and outer radii of 12 cm and 25 cm. The same

strategy regarding the ends of the cylinders used in the

BEM case was taken for the HEM, except at the finite

element portion of the grid, where the cylinder ends were

discretized and the analytic solution was imposed. To

achieve the interaction of all three Cartesian components

of E, the ictng axis of the cylinders was tilted 450 off the z

axis of the Cartesian coordinate system. Cases have also

been examined where the long axis of the cylinders was

tilted to various other degrees, and no effect in the magni-

tude of E was observed [23].

A set of results complementary to those of Fig. l(a)-(c)

should be mentioned. In these computations a known
value of E (having magnitude -EOand direction parallel to

the long axis of the cylinders) was imposed at the boundary

of the outer cylinder. The cylinder configuration again

contained two electrically distinct tissues and was excited

at 70 MHz. The same mesh spacings and grid sizes shown

in Fig. 2 were used in these calculations as well. Also, as
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Fig. 3. (a) Comparison of the analytic solution for a single infinitely
long cylinder with the three-dimensional BEM solution for a cylinder
of finite length with its ends discretized. The cylinder is lung-filled
(<, = 40, 0 = 0.35 Q- ‘m-l), excited at 70 MHz, and has E imposed at
R = 25 cm. The numbers shown indic:ate the relative distance from the
cylinder midplane where the cylinder length has been normalized to 10

(e.g., 5 denotes the midplane). (b) Same as (a) except that the BEM

solution has been computed with the cylinder ends removed. The decay
in the numerical solution (relative to the analytic) as the cylinder ends

are approached is clear.
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described above, the cylinders were rotated 45° off the z

axis for full interplay between the components of E. The

accuracy of the numerical solutions was found to be within

5 percent, 2 percent, and 3 percent of the imposed analytic

E for the FEM, BEM, and HEM, respectively [23]. The

overall accuracy of all three methods, as shown in Fig.
BACK

l(a)–(c), is quite satisfying, especially in view of the coarse

computational grids shown in Fig. 2.

IV. CLINICAL EXAMPLE z

One of the more challenging design problems in clinical x--$

hyperthermia is the effective heating of deep-seated tumors.

Considerable effort has been devoted to the development

of noninvasive regional EM hyperthermia systems, and the

ability of these devices to heat substantial portions of

deep-seated tumors to therapeutic levels has been of par-

ticular interest. One of the earliest devices proposed was a

copper sheet which wraps around the body section to be FRONT

heated [4]. This type of magnetic induction device has

received significant attention in the clinical treatment and

numerical modeling realms, and both clinical observations

as well as one- and two-dimensional numerical models

have suggested that the device is not a promising design Lx

LEFT SIDE

L

RIGHT SIDE

for deep heating [8], [10], [25]–[27]. In this section we Fig. 4. Three-dimensional boundasy element grid of the human body.
present a three-dimensional model of this type of device to

illustrate an application of our numerical f&mulations. A

more complete discussion of the three-dimensional numeri-

cal results that we have obtained for this device and

several other types of EM hyperthermia systems can be

found in [28].

In order to resolve the geometry of a three-dimensional N
human body while staying within the confines of a mod-

< --l
crate-sized computer (MicroVAX II), the boundary ele-

ment approach was used in this sample simulation. Fig. 4

shows a three-dimensional boundary element grid of the

body. This grid was constructed from cross-sectional

anatomical drawings found in [29]. The body front faces in

the negative y direction as indicated by the right-hand-rule

coordinate axes depicted in the lower left portion of each

figure. To keep the number of nodes at a minimum while

not sacrificing too much geometric detail, the arms and

feet were not included. Further, the interior organs were

not discretized; that is, this boundary element model of the

body was assumed electrically homogeneous. The mesh in

Fig. 4 consists of 300 boundary nodes (900 complex un-

knowns) with typical nodal spacings of 5–8 cm (which in

the worst case, for this example, results in approximately

12 nodes per wavelength). Fig. 5 shows a clinical setting

with the subject placed inside the single-turn concentric

coil ready for simulated treatment of the lower abdomen.

A uniform current density is assumed known on the in-

finitely thin coil; hence, i? x H is presumed known on the

source, and the matrix equation given in (14) is closed

algebraically. The coil is 35 cm in the z direction (with a

radius of 25 cm) and is excited at 13 MHz.

In Figs. 6 and 7, contours of IEI on the body surface are Fig. 5. The boundary element grid in Fig. 4 placed inside a concentric
shown. In this particular simulation the body consists of coil positioned for treatment of the lower abdomen.
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muscle and the background medium is air. Fig. 6 shows [El

contours on the outside body surface (the air side of the

air-muscle interface) while Fig. 7 shows the corresponding

contours on the inside body surface. The contour lines in

these figures are fairly uniform around the body above and

below the coil where the body diameter is relatively con-

stant, but show some circumferential variation inside the

coil where the body surface is radially less uniform. Figs. 6

and 7 also indicate that the magnitude of the surface

electric field is largest on the body portion inside the coil,

but falls off rapidly in the z direction, with effectively no

fields present above the shoulder region or below the

midportion of the thighs. This kind of result is pertinent to

hyperthermia treatment planning and equipment design

given that other regional EM therapy devices have had’

problems with heating body portions outside the area of

direct exposure [5], [17].

Comparison of Fig. 6 with Fig. 7 shows that the magni-

tude of the surface electric field is only slightly affected by

the air–muscle interface at the body surface. In fact, the

scale of Fig. 6 can be recovered in Fig. 7 by multiplying

the contour levels in Fig. 7 by 0.95. The degree of similar-

ity between the magnitude distribution on either side of

the body surface suggests that the electric field is largely

continuous at, and thus, tangential to the body surface

throughout the longitudinal dimension. This type of result

is also highly relevant to treatment planning and equipment

design since some regional devices which produce electric

fields that are largely perpendicular to the body surface are

believed to create excessive superficial heating due to the

electromagnetic jump conditions at such an interface [30].

Contours of IEl in transverse slices through the body

have been examined and these results illuminate the weak-

ness of an induction coil for deep-seated hyperthermia. In

such cross-sectional slices, the dlecrease in lE I (to effec-

tively zero) towards the center of the patient was readily

apparent regardless of where the transverse section was

taken relative to the coil. Large portions of the central axis

of the patient had IE I less than 40 percent of the maximum

IEI on the body surface. This result occurred throughout

the length of the coil with only very small (less than 10

percent of the maximum surface Ill]) electric fields existing

inside the body 10 cm beyond the ends of the coil. These

results are discussed more fully in [28].

V. CONCLUSIONS

Finite, boundary, and hybrid element formulations for

three-dimensional solutions of the Maxwell equations in

lossy dielectric media have been presented. These numeri-

cal approaches have been implemented as computer al-

gorithms for calculating three-dimensional fields in such

heterogeneous media, and-have been verified as accurately

solving the equations as posed via comparisons with known
analytic solutions. Such comparisons have been extensive
given that a variety of different tissue electrical properties,

geometries, and boundary condil.ions have been examined.

Representative examples have been presented. The basic
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problem formulation, while quite general, is of direct inter-

est when simulating hyperthermia treatments for cancer

therapy. The usefulness of these algorithms has been shown

through a relevant clinical example where the treatment

planning and equipment design implications of the results

that can be obtained from three-dimensional device simu-

lation have been indicated. These numerical approaches

and algorithms should provide a foundation for future

simulations of hyperthermia cancer therapy where three-

dimensional EM fields need to be calculated in detailed

body models.

Studies are beginning to emerge where detailed three-

dimensional energy deposition patterns are being calcu-

lated inside inhomogeneous three-dimensional models of

the body [18], [19]. The competitiveness of the formula-

tions described in this paper with the finite-difference

time-domain (FDTD) method has yet to be established for

three-dimensional unbounded problems containing a re-

gion of high heterogeneity. Certainly, the computational

grids used in this work ( = 300 nodes) are small relative to

those achieved in [18] and [19] ( =105 cells). However,

while the numerical approaches given herein will always

result in a matrix equation (as opposed to the FDTD,

where matrices are avoided through explicit time-stepping),

iterative solution schemes should significantly reduce the

storage requirements of the FEM equations, thereby allow-

ing for greater grid resolutions. Further, these techniques

should require considerably fewer unknowns than the

FDTD for two reasons: (1) no discretization is needed in

the background medium containing the source and hetero-

geneous object, and (2) the inherent flexibility of finite and

boundary elements is such that irregular grid spacing can

readily be accommodated, which makes possible efficient

meshing of irregular geometries, regions of little or great

interest, and regions of large or small field gradients. Thus,

further work will be required to quantify the advantages

and disadvantages of the methods described herein com-

pared to those of FDTD and other numerical approaches.
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