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Abstract —Finite, boundary, and hybrid element approaches are pre-
sented as numerical methods for computing electromagnetic (EM) fields
inside lossy dielectric objects. These techniques are implemented as com-
puter  algorithms for solving the Maxwell equations in heterogeneous
media in three dimensions. Algorithm verification takes the form of
comparisons of test cases with analytic solutions. Computed results for
each technique are in good agreement with exact solutions, especially in
the light of the coarse computational grid resolutions used. Implementation
was in Fortran on a moderate-sized computer (MicroVax II). The basic
problem formulation is quite general; however, it has direct application in
hyperthermia as a cancer therapy where the EM fields produced inside the
patient by external sources are of interest. An example of the application
of these numerical methods in a three-dimensional clinical setting is
shown.

I. INTRODUCTION

NTEREST IN USING numerical analysis to extract a

more complete understanding of the capabilities of
electromagnetic (EM) devices for producing hyperthermia
in cancer patients has increased dramatically within the
last several years [1], [2]. Such analyses can be performed
via numerical simulations of hyperthermia cancer treat-
ments. The simulation process can be considered a two-step
procedure: (1) compute the energy deposition produced by
the heat source and (2) compute the thermal redistribution
due to heat conduction and blood perfusion. While the
later is generic to all heat delivery systems, the first proce-
dure is dependent on the specific source under considera-
tion. Due to the widespread use of the EM field as such a
heat source (e.g. see [3]-[5]), numerical solution of the
Maxwell equations in tissue (a lossy, heterogeneous
medium) is of particular interest to hyperthermia re-
searchers. While our motivation is due to interest in the
hyperthermia problem, the approaches described herein
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are quite general and applicable to other problems involv-
ing heterogeneous lossy dielectric objects.

Currently, we are developing numerical methods for
calculating electromagnetic fields induced in the body by
various EM source arrangements [6]-[10]. Several clinical
devices have been modeled as boundary value problems, in
which case the finite element method (FEM) with simple
linear and bilinear elements has been employed to solve
the Maxwell equations [6], [8), [10]. The details of the
patient interior have been preserved by generating finite
element grids from CT scans of actual cancer patients. A
number of clinical settings, however, result in electromag-
netic problems which are fundamentally unbounded. For
these situations a hybrid element method (HEM) has been
devised where finite elements, which are used inside the
heterogeneous patient, are coupled to boundary elements,
which are used on the patient surface and detached EM
source [7]. Thus far, all of our results have been restricted
to two dimensions, where both the transverse magnetic
and transverse electric cases have been studied. Other
numerical approaches to solving the Maxwell equations in
the context of two-dimensional hyperthermia treatment
simulation have been reported, and examples of such are
[11]1-[13]

While these two-dimensional computed results have been
informative and agree with limited available data, there
exists a need for detailed three-dimensional solutions of
the Maxwell equations in hyperthermia treatment simula-
tions. Since the cross-sectional dimensions of many treat-
ment situations are on the order of the longitudinal dimen-
sion, the propriety of making two-dimensional assumptions
remains an open question. Full three-dimensional solu-
tions are a required component in establishing the degree
of validity of such two-dimensional assumptions. Further,
some phenomena, such as resonances in the body extremi-
ties or effects of longitudinal tissue variations, which may
play an important role in understanding the capabilities of
certain EM therapy devices, cannot be readily studied with
two-dimensional models, but must be addressed with
three-dimensional simulations. Finally, since the physical
problem of interest is truly three-dimensional due to the
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vector nature of the EM field and the arbitrary tissue
variation in all directions, the most realistic and accurate
simulations will result from three-dimensional models.

Three-dimensional solutions of EM fields induced in
biological tissue have been reported in the literature. A
scattering formulation resulting in domain integral equa-
tions which were solved via the method of moments has
been implemented and the details of the approach can be
found in [14]. A number of researchers have used this
approach to calculate EM fields induced in three-dimen-
sional block models of man in the context of potential
health hazards due to EM radiation (e.g. see [14], [15]).
More recently, this same formulation has been used to
analyze the heating of tissue placed between parallel
capacitive plates [16] and to study the power deposition
inside the body but outside the area of direct exposure
[17]. While such studies were based on fully three-dimen-
sional calculations which were pioneering in nature, the
models of man that were used were intended to study gross
effects rather than detailed energy deposition patterns. In
order to increase the computational resolution to that
necessary for making detailed EM field calculations inside
the body, most investigators, to date, have been forced to
make simplifying assumptions to reduce the problem to a
two-dimensional calculation. Studies based on the finite-
difference time-domain method are beginning to emerge
where detailed three-dimensional energy deposition pat-
terns are being calculated inside the body [18], [19].

In previous papers [6], [7] we have presented finite,
boundary, and hybrid element numerical methods for
computing detailed EM fields in the body as three-dimen-
sional formulations, but have only numerically imple-
mented and verified their two-dimensional counterparts.
In this paper, we present the three-dimensional numerical
implementations and verifications of these approaches. We
begin with a discussion of our finite, boundary, and hybrid
element formulations as a review and consolidation of
these approaches, which heretofore have been presented
independently. Some additional details of the three-dimen-
sional implementations of boundary conditions and the
hybrid coupling are also provided. The verification of the
three-dimensional algorithms takes the form of compari-

sons with known analytic solutions. Our purpose here is
not to provide a study which focuses on comparing the
algebraic requirements and accuracy of these three meth-
ods, but rather to illustrate that our numerical formula-
tions can be implemented in three dimensions with good
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accuracy, yet without any unusual complications or un-
foreseen problems. Finally, an example which is relevant
to clinical hyperthermia is shown. This work should pro-
vide a foundation upon which detailed three-dimensional
calculations of EM fields induced in the body can be
made.

IL

The second-order partial differential equations in the
quantities of interest—either E or H —which need to be
solved are

MATHEMATICAL FORMULATION

1
VX—VXE+iwe*E=0
iop

1
VX——VXH+iopH=0
iwe

(1a)
(1b)

where

complex amplitude of the electric field,
complex amplitude of the magnetic field,
magnetic permeability,

= ¢ + ig/w, complex permittivity,
permittivity,

electrical conductivity,

radian frequency,

/=1.

In addition, a periodic time variation of the form e™*** has
been assumed. Since (1a) and (1b) are to be enforced in a
heterogeneous medium, certain boundary conditions must
be imposed on E and H at interfaces where the electrical
properties change abruptly. Assuming no electromagnetic
sources are present, these conditions can be stated as

(22)

A-(e}E,— e3E,) =0

N.sqmﬂ\*‘; mh’

AX(H,—H,)=0 (2)
A-(pHy — pyH,) = 0. (2d)

By expressing (2a) and (2b) in a Cartesian coordinate
system, E on one side of an interface can be conveniently
expressed in terms of its components on the other side
such that

s i o
2 24,2 DI - _
E, nx€*+ny+n, nxny( S 1 nn, | —-—1 E,
2 €7 €
X X *
€ €1 €
- DL 2,270 2 R
E, )= nxny(e* 1) nx+ny€*+nz nynz(€=k 1) E, (3)
, 2 2
* * *
€1 € €7
1 AU 24,2 270
E, nxnz(e* 1) nynz( " 1) ny+ny+n;— || E,
2 €2 €

where the subscripts distinguish the two regions forming
the interface and the unit normal to the interface is A=
(ny,n,,n,). A similar expression can be written for H
with y taking the place of €* in (3). Matrix equation (3) (or
its equivalent for the magnetic field case) is useful for
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implementing the interface boundary conditions regardless
of whether the finite, boundary, or hybrid element method
is used. In the context of EM-induced hyperthermia, p is
effectively constant; hence, H is continuous across inter-
faces. However, since o and e vary with tissue type and
frequency, E is discontinuous at such boundaries.

A. Finite Element Formulation

The finite element solution is based on the weighted
residual or “weak” form of (1a) and (1b) [6]:

(9% 39 3900
wp\ 3y 3y 9z Iz 10
4, <_L&3¢x> <;(@@
iop dy dx op \ dx dx
1 a¢‘j 84)1
_iwp, dz dx
5 —¢¢,¢Jda 0 0
J
(’@/= E}’; BU= 0 _¢¢z¢jda 0
Ezj
0 0 ~ .4, da
1
vV X—vV XE|¢,)+(ive*Ep,)=0 (4a)
iop

<(v X Z:le—*v ><H)¢,> + (iopHp, ) =0  (4b)

where () indicates integration over the volume and ¢, are
any set of real scalar weighting functions. In this work ¢,
are simple piecewise-linear or bilinear functions. An in-
tegral theorem can be used on the first term in (4a) and
(4b), producing

1
<(@V X E XV¢,> +{iwe*E¢,) = —¢n X H¢, ds
(52)
1

iwe*

< ( v X H) X v¢i> + (iwpHo,) =9§ﬁ x E¢,ds (5b)
where 7 is the outward-pointing unit normal to the surface
containing the volume. The motivation for performing this
operation is to expose A X H as the natural boundary
condition for E and, in the dual problem, to expose A X E
as the natural boundary condition for H.

In this work a Galerkin form of (5a) is used where E
and A X H are expanded in terms of the weighting func-
tions ¢, such that

E= ; E ¢ (x) (6a)

nxX H= }f(ﬁxH)j¢j(x)=

L Fo(x)  (6b)
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where F; is introduced for notational brevity. Similarly, H
and A X E can be expanded with ¢, for a Galerkin solution
of (5b). Hence, the numerical discretization is completed
with the enforcement of (5) for i =1 through N (where N
is the total number of nodes in the discretization). Sub-
stitution of (6a) and (6b) into (5a) results in the matrix
formulation

[4]{¢}=[BI{#} (7

where A, &, B, and % comprise the complex submatrices

1 3¢, d¢, 1 3¢, 9¢,
iop dx dy iwp dx 0z
d¢, 9, 1 d¢, 3¢,
+ =2t wer o, -
z 3z 4 iop dy 3z
1 99, 99, 1 (09, 06, 94, 09,
- — | L=+ =L 4008,
iop 3z dy top\ dx dx  dy 3y 4
E
J
7= 5,
E

<&

with i and j running from 1 to N. The dual matrix
formulation for the magnetic field requires the correspond-
ing substitutions into (5b).

The interface boundary conditions, (2a) and (2b), need
to be accounted for during the assembly of matrix equa-
tion (7). Conceptually, a cut in the finite element grid is
made along an interface between two tissues, but the
Galerkin equation (5a) for a node located on such an
interface still contains integrations over elements on each
side of the boundary. The expression for E, ie. (6a),
however, requires separate values of E; on either side of
the interface. Equation (3) provides the relationship be-
tween these two unknowns which is necessary to close the
algebraic system.

In practice, only a single node is used to represent a
point on a tissue interface. Prior to matrix assembly one of
the unknowns at the interface is selected to be retained in
the algebraic system, say the tissue 1 unknowns. Matrix
assembly over elements in tissue 1 proceeds directly since
these unknowns are part of the matrix algebra. However,
during assembly of elements in tissue 2, the unknowns on
this side of the interface are not represented in the column
vector of unknowns to be determined, but their contribu-
tions to the matrix can be included by expressing them in
terms of the tissue 1 unknowns via (3) (for the electric field
case).

The application of (3) during the matrix assembly proce-
dure proceeds in a straightforward manner provided a
suitable nodal normal can be computed. The nodal normal
of Gray [20] and Engleman ef al. [21], which is based on
conservation principles, is used. In three dimensions the
nodal normal, #; = (n,, n,n,), can be computed on finite
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) i) i3] o
R

and () indicates domain integration only over the tissue
region for which the normal is being computed.

elements as

3,
ax

1

n

1

n

n X
where

¢,

d¢,
0z

dax

de,

n= 79';

B. Boundary Element Formulation

The boundary element method used herein is based on
the vector equivalent of Green’s second identity, which can
be stated as

f(Q-v XV XP—Pv XV XQ)dV
14

=¢(va XQ—-QXV XP)-Ada (9)
S

where P and Q are vector functions with continuous first
and second derivatives throughout ¥ and on § [22]. To
derive the boundary element expression for the electric
field, let P=E and Q = Gd, where d is an arbitrary unit
vector and G is the unbounded-space Green function
satisfying the Helmholtz equation with singularity at x
=x"

(10)

In (10), k is the wavenumber of the unbounded space,
which in general is given by k? = w?pe*. After some vector
manipulations, it can be shown that

V3G+k*G=~8(x—x').

fV(—V- [(d-VG)E]+4-[vG(V-E)-8(x—x)E])dV

=¢§ﬁ' [VG X (EXA)—iop(H X#)G]da (11)

9 4

9
0[18U +¢( nx?); +

9
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which becomes
[a-{(8(x—x)E)av= ~fa-{(AX E)xvG
v s

+iop(AXH)G+(A-E)vG)da (12)

by applying the divergence theorem to the first term on the
left side of (11), and assuming that ¥ is a homogeneous
source-free region with x’ on S. Since 4 is arbitrary, and a
factor common to all terms, it follows that the boundary
expression for node i located at x" on S is

oE; =~ {ion(i X H)G, + (4 X E)
S

X VG, +(A-E)VG,}da (13a)

where a;= [,8(x—x,)dV and G, has its singularity at
node i. The dual expression for the magnetic field can be
derived using the same approach and can be shown to be

o H =_<,5{me*(ﬁ X E)G,—(AX H)X VG,
S

~(A-H)VG,} da. (13b)

Relative to the variety of integral forms of the Maxwell
equations that are available, (13a) and (13b) are computa-
tionally attractive in that only a scalar Green function is
involved, the variables in the integrands are in terms of the
natural boundary conditions for the electric and magnetic
fields, only boundary integration is required, and sources
are represented through equivalent surface fields.

As in the finite element formulation, the field variables
arc expressed in terms of the expansions given in (6a) and
(6b) with the understanding that ¢ is only active on the
boundary. With the variables discretized, N versions of
(13) (where N is the number of boundary nodes) are
enforced using the set of Green functions such that the ith
Green function is singular at the ith node. This process
carried out on (13a) results in the matrix equation

[Ci{#}=[DK¢&}

where D, &, C, and % form the complex submatrices:

(14)

% v 0¥

ny'a—y-—i—nzz)ﬂbjda ¢(ny-5—nl'5;)¢'jdll ¢(n:%§—n,¢—a—z)¢jda
49 19 19 09 9 da 1% 9 d
D,j= ¢ nxa-;—ny;; ¢,da a,8,1+¢ ""E“L"Ya_y”’%? ¢, ¢ ,'(,5)— Y3, ¢, da
0% 39 0% % 4 5+ 3% 69+ 09 p
¢(nx7z‘*n23;)¢/da ¢ nyg—nzg; ¢, da a8, ¢ o nyay (e ¢, da
Y, da 0 0
E"J ¢ ¢J F;‘J
&= E, C,=- 0 ¢g¢jda 0 F =iop F,
0 0 ¢?¢Jda
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with % = G(x — x;), the unit normal vector #A =
(n,,n,,n,), Fdefined by (6b), § equal to the Kronecker
delta, and i and j running from 1 to N. The dual matrix
formulation for H is reached using the same procedure
with (13b) as the starting point.

Matrix equation (14) provides a mechanism for calculat-
ing E on some boundary given that # X H is known on
that boundary or, conversely, for calculating A X H given
E. Once both 7 X H and E are known over some boundary,
then E can be calculated in the homogeneous region either
inside or outside this boundary via 13a (13b) with « equal
to unity. A similar statement can be made about the dual
matrix formulation involving field variables H and n X E.

The interface conditions for multiple region domains are
accounted for during the assembly of (13a) and (13b) with
the same strategy outlined above for the finite element
approach where the unknowns on one side of the interface
are eliminated as they arise in the matrix algebra by their
counterparts on the other side of the interface via (3).
These conditions, as well as (132) and (13b) themselves,
require the definition of a nodal normal. In three dimen-
sions, a nodal normal based on surface elements can be
written as A, = (n, ,n,,n,) where

1 1
nx,=;£nx¢’da nyl=;£ny¢,da

1
n,=—¢n.s da (15)
=9

and

n= [(inxqs, da)2+(5ény¢, da)2+(9gnzqsl da)T/z.

This is actually the definition of the nodal normal posed
by Gray [20], and the expression in (8) was derived from
(15) via the divergence theorem.

C. Hybrid Element Formulation

The hybrid element method [7] employs the finite ele-
ment method in regions of heterogeneity and the boundary
clement method in regions of unbounded homogeneity.
Recall that solution of the Galerkin weighted residual
statement for E (eq. (5a)) via finite elements requitres
knowledge of A X H or E over the entire boundary of the
domain of interest. Similarly, (5b) requires that either
A X E or H be known on the boundary. However, many
problems are fundamentally unbounded in that these
quantities can only be specified over the EM source which
in general does not completely enclose the region of
heterogeneity. The boundary element statements ((13a)
and (13b)) provide the necessary relationships between
boundary values of i X H and E (or AX E and H). In
the hyperthermia context, these equations are applied in
the homogeneous space, exterior to the patient, but con-
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taining the EM source. The boundary of this region also
includes infinity, but kernels of the type found in (13a)
and (13b) can be shown to vanish there [22]; hence, the
only contributions to (13a) and (13b) occur from the
boundary of the patient and source. By integrating along a
path over the patient surface and detached EM source,
unknown patient surface quantities are related to known
source quantities which provide the information necessary
to close the finite element matrix problem on the patient
interior.

In the case where E is known on the detached source,
the hybrid element method begins with the finite element
formulation which provides N + m equations (for the N
nodes comprising the patient interior and the m nodes
constituting the patient surface) for each nodal degree of

freedom:
Ay E,\ [o o]0
A, E;| |0 B|\F

where B is defined in (7) with length m, E, are the
unknowns on the patient interior, and E; and F; are the
unknown E and aX H on the patient surface. The
boundary element method provides m + n equations (for
the m nodes on the patient surface and the n nodes on the
source) for each nodal degree of freedom:

[Cu Cu}{ﬂ} _ [Du DIZ}{EI} (17)
C21 C22 F2 Dll D22 E2
where E, represents the known E and F, the unknown

A X H of the source. Inverting the matrix on the left side of
(17) and denoting the partitions for this inverted matrix

with a tilde results in
F, E
b= o @18)
F, E,
By taking the top m equations of (18), F; is eliminated in

(16), thus
EP
{ E, }

0
- {B [CuuDis + CaDn) ( Es) } -

A12
A22

(16)

Dll
D21

D12
D22

Cll 612

C21 622

{Au A12
A21 Azz - B [C11D11 + C12D21]

Note that the bottom set of equations in (18) is not
explicitly required for solution of (19); however, if F, is
needed to calculate either the loading on the source or the
electric field exterior to the body, F, can be computed
from the bottom half of (18) once E, is known from
solution of (19).

When # X H is specified on the source boundary (i.e.,
F, known), the matrix algebra is similar to the above
except that the bottom set of equations in (18) is needed.
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In this case, (19) becomes

A11 A12
A21 A22 - B [C11D11 + C12D21]
0 C21D11 + C22D21

An alternate approach, which removes the need for the
lower set of equations in (18), is to interchange F, and E,

e)-b el

Cu
C21

— Dy,
- Dzz

F
E,

Dll
D21

- C12
- sz

| ;

Then, the inversion of the matrix on the left side of (21)
can be used to eliminate F, in (16):

}. (21)

':All A12 }{Ep}
A21 A22_B[C11D11,_D12D21] El

0
B [ —-CyCpy + f)uczzl {F}

where the tilde notation is again used to represent a
partition of the inverse of the left side matrix in (21). Now
the bottom set of equations in (21) is not explicitly needed
for the solution of (22). If direct solution for the magnetic
field is desired, the same procedure with A X E and H
playing the roles of A X H and E, respectively, can be
used.

The left side matrix resulting (in (19) or (22)) from the
hybrid coupling has an unusual structure. It is largely
sparse owing to the fact that it is largely populated with
FEM equations (assuming E, > E, ), but contains a smaller
dense region composed of the algebraic BEM equations.
For direct solution, the half-bandwidth grows to the num-
ber of boundary nodes (for each nodal degree of freedom),
which rapidly restricts the size of the problem that can be
considered in three dimensions. Further, the bandwidth of
the pure FEM equations typically gets quite large in three
dimensions, which has encouraged the use of iterative
solution techniques in straight three-dimensional finite ele-
ment applications. (A general rule of thumb for the pure
FEM case is that the bandwidth goes as N2 in two
dimensions and N?2/3 in three dimensions, where N is the
total number of nodes in the mesh. Therefore, given a
square mesh with ten nodes on a side, the half-bandwidth
~10 in two dimensions-but 100 in three dimensions.) In
this work we have used well-established direct solution
techniques which allowed us to focus on the generation of
a consistent set of algebraic equations with a unique
solution. However, in order to fully exploit the power of
the hybrid approach, careful study of storage and solution
schemes for the hybrid algebraic system of equations is
needed. In particular, iterative $olution techniques such as
conjugate gradient methods deserve close attention.

} (22)

687
0 E, 0
- B [C11D12 + élZDZZ] El = 0 (20)
C21D12 + C22‘D22 E2 FZ
IT1I. Test CASES

In this section the numerical solutions posed in the
previous section are compared to analytic solutions for two
concentric cylinders of electrically distinct tissues. Three-
dimensional test cases have been examined for each of the
three numerical approaches—(i) the finite element method
(FEM), (ii) the boundary element method (BEM), and (iit)
the hybrid element method (HEM)—using two types of
boundary conditions specified on the outer cylinder
boundary—(i) /A X H and (ii) E —and a variety of differ-
ent cylinder radii, tissue electrical properties, and grid
discretizations. The results that are shown here are in-
tended to be representative examples of the type of calcu-
lations made and the accuracy obtained with fairly coarse
grid resolutions (for a more detailed discussion of such
results and a derivation of the analytic solutions, see [23]).

Fig. 1(a)-(c) shows FEM, BEM, and HEM results for
the magnitude of E versus radius through the midplane of
finite length cylinders. The concentric cylinders, which
contained electrically distinct media (tissues), were excited
at 70 MHz. A known value of A X H was imposed at the
boundary of the outer cylinder such that H had magni-
tude H, and direction longitudinally parallel to the cylin-
der boundary. The worst-case error in these plots is within
4 percent, 2 percent, and 3 percent of the analytic E for
the FEM, BEM, and HEM, respectively.

Fig. 2 indicates the numerical discretizations that were
used in obtaining the solutions in Fig. 1. For the pure
FEM solution, the grid was constructed with Agp = 30°,
Ar =3.125 cm, Az =10 cm, resulting in cylinder lengths of
50 cm, an outer radius of 25 cm, and an inner radius of
12.5 cm. Analytic values of 4 X H were prescribed at the
boundary nodes comprising the ends of the cylinder con-
figuration. The BEM mesh used Ap =30° and Ag =20°
on the inner and outer cylinders while Az varied from 12
cm to 16.5 cm. This nodal spacing generated cylinders that
were 100 cm in length with inner and outer radii of 15 cm
and 25 cm, respectively. As in the FEM case, analytic
values could be imposed at the cylinder ends. However,
since the midplane solution was of interest, the ends of the
cylinders were not discretized (see Fig. 2(b))—the argu-
ment being that if the cylinders are long enough relative to
the effective radius of the Greea function influence, the
ends do not effect the midplane solution. Instead, the
nodes that would be required to construct the cylinder
ends (a sizable number, e.g., sece Fig. 2(a)) were used to
extend the length of the cylinders and to improve cir-
cumferential resolution.

The effects on the numerical solution of leaving the ends
off the boundary element cylinders are shown in Fig. 3(a)
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Fig. 1. (a) Comparisons of the analytic solution for two infinitely long concentric cylinders with a three-dimensional
numerical solution for iwo concentric cylinders of finite length. The excifation frequency was 70 MHz and A X H was
imposed at R = 25 cm. Two different cases are shown: (i) heart (e, =89, ¢ =0.93 @~ 'm™1) surrounded by lung (¢, = 40,
o =035 £ 1m™1), (i) bone (¢, =10.5, 0 — 0.02 £ 'm~!) surrounded by muscle (¢, = 72, 0 — 0.89 € 'm™1). The FEM
was used with an inner cylinder radius of 12.5 cm as indicated by the dotted vertical line. (b) Sdme as (a) except that the
BEM was used with an inner cylinder radius of 15 cm. (c) Same as (2) except that the HEM was used with an inner cylinder
radius of 12 cm. The inner cylinder was constructed from finite elements while the outer cylinder was composed of

boundary elements.

and (b). The BEM solution with E imposed at the radius
of a single cylinder with the same dimensions as the outer
cylinder in Fig. 2(b), but with discretized ends (A¢p = 20°,
Ar =5 cm) is displayed in Fig. 3(a). The magnitude of E
versis radius for five different cross-sectional planes, which
begin at the midplane and move toward the cylinder end,
is plotted. For these calculations, the analytic solution was

imposed  at each cylinde'r end as in the FEM case. The
correspondirig calculations are plotted in Fig. 3(b) foi the
cylinder with the ends removed. The decay in the numeri-
cal results (relative to the analytic solution) is appareiit as
the nondiscretized end of the cylinder is approached. None-
theless, the numerical calculations near the midplane with
or without the cylinder ends discretized are essenitially
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Fig. 2. Three-dimensional test case grids for the (a) finite (FEM), (b)
boundary (BEM), and (¢) hybrid (HEM) element methods.

indistinguishable and comipare quite well to their analytic
counterpart, as shown. In general, we do not recommend
leaving off the ends of the cylinders (which changes the
numerically solved problem); however, by doing so we
were able to find a simple test case with which to explore
three-dimensional discretization errors on a relatively small
compuiter (MicroVax II).

The HEM solution was achieved with Ap =40°, Ar =3
cm, and Az=15 cm in the finite element region, and
Ap =24°, Az =15 cm in the boundary element portion of
the mesh which produced cylinders 105 cm in length with
inner and outer radii of 12 cm and 25 cm. The same
strategy regarding the ends of the cylinders used in the
BEM case was taken for the HEM, except at the finite
element portion of the grid, where the cylinder ends were
discretized and the analytic solution was imposed. To
achieve the interaction of all three Cartesian components
of E, the long axis of the cylinders was tilted 45° off thé z
axis of the Cartesian coordinate system. Cases have also
been examined where the long axis of the cylinders was
tilted to various other degrees, and no effect in the magni-
tude of E was observed [23].

A set of results complementary to those of Fig. 1(a)—(c)
should be mentioned. In these computations a known
value of E (having magnitude E, and direction parallel to
the long axis of the cylinders) was imposed at the boundary
of the outer cylinder. The cylinder configuration again
contained two electrically distinct tissues and was excited
at 70 MHz. The same mesh spacings and grid sizes shown
in Fig. 2 were used in these calculations as well. Also, as
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Fig. 3. (a) Comparison of the analytic solution for a single infinitely
long cylinder with the three-dimensional BEM solution for a cylinder
of finite length with its ends discretized. The cylinder is lung-filled
(€, =40, 0 = 0.35 @~ m™1), excited at 70 MHz, and has E imposed at
R =25 cm. The numbers shown indicate the relative distance from the
cylinder midplane where the cylinder length has been normalized to 10
(e.g., 5 denotes the midplane). (b) Same as (a) except that the BEM
solution has been computed with the cylinder ends removed. The decay
in the numerical solution (relative to the analytic) as the cylinder ends
are approached is clear.
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described above, the cylinders were rotated 45° off the z
axis for full interplay between the components of E. The
accuracy of the numerical solutions was found to be within
5 percent, 2 percent, and 3 percent of the imposed analytic
E for the FEM, BEM, and HEM, respectively [23]. The
overall accuracy of all three methods, as shown in Fig.
1(a)—(c), is quite satisfying, especially in view of the coarse
computational grids shown in Fig. 2.

IV. CuiNIcAL EXAMPLE

One of the more challenging design problems in clinical
hyperthermia is the effective heating of deep-seated tumors.
Considerable effort has been devoted to the development
of noninvasive regional EM hyperthermia systems, and the
ability of these devices to heat substantial portions of
deep-seated tumors to therapeutic levels has been of par-
ticular interest. One of the earliest devices proposed was a
copper sheet which wraps around the body section to be
heated [4]. This type of magnetic induction device has
received significant attention in the clinical treatment and
numerical modeling realms, and both clinical observations
as well as one- and two-dimensional numerical models
have suggested that the device is not a promising design
for deep heating [8], [10], [25]-[27]. In this section we
present a three-dimensional model of this type of device to
illustrate an application of our numerical formulations. A
more complete discussion of the three-dimensional numeri-
cal results that we have obtained for this device and
several other types of EM hyperthermia systems can be
found in [28].

In order to resolve the geometry of a three-dimensional
human body while staying within the confines of a mod-
erate-sized computer (MicroVAX II), the boundary ele-
ment approach was used in this sample simulation. Fig. 4

shows a three-dimensional boundary element grid of the-

body. This grid was constructed from cross-sectional
anatomical drawings found in [29]. The body front faces in
the negative y direction as indicated by the right-hand-rule
coordinate axes depicted in the lower left portion of each
figure. To keep the number of nodes at a minimum while
not sacrificing too much geometric detail, the arms and
feet were not included. Further, the interior organs were
not discretized; that is, this boundary element model of the
body was assumed electrically homogeneous. The mesh in
Fig. 4 consists of 300 boundary nodes (900 complex un-
knowns) with typical nodal spacings of 5-8 cm (which in
the worst case, for this example, results in approximately
12 nodes per wavelength). Fig. 5 shows a clinical setting
with the subject placed inside the single-turn concentric
coil ready for simulated treatment of the lower abdomen.
A uniform current density is assumed known on the in-
finitely thin coil; hence, A X H is presumed known on the
source, and the matrix equation given in (14) is closed
algebraically. The coil is 35 cm in the z direction (with a
radius of 25 cm) and is excited at 13 MHz.

In Figs. 6 and 7, contours of |E]on the body surface are
shown. In this particular simulation the body consists of
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Fig. 4. Three-dimensional boundary element grid of the human body.

Fig. 5. The boundary element grid in Fig. 4 placed inside a concentric

coil positioned for treatment of the lower abdomen.
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Fig. 6. Contours of |E| produced by the 13 MHz concentric coil model
on the exterior surface of the body. The body is muscle-filled (¢, =122,
6=0.6 9 'm™1) and the background medium is air. The dotted lines
indicate the location of the coil. Contours are scaled to a maximum of
10 and are incremented in steps of unity.
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Fig. 7. Same as Fig. 6 for the interior surface of the body. To recover
the scale of Fig. 6 multiply by 0.95.
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muscle and the background medium is air. Fig. 6 shows |E|
contours on the outside body surface (the air side of the
air—muscle interface) while Fig. 7 shows the corresponding
contours on the inside body surface. The contour lines in
these figures are fairly uniform around the body above and
below the coil where the body diameter is relatively con-
stant, but show some circumferential variation inside the
coil where the body surface is radially less uniform. Figs. 6
and 7 also indicate that the magnitude of the surface
electric field is largest on the body portion inside the coil,
but falls off rapidly in the z direction, with effectively no
fields present above the shoulder region or below the
midportion of the thighs. This kind of result is pertinent to
hyperthermia treatment planning and equipment design
given that other regional EM therapy devices have had-
problems with heating body portions outside the area of
direct exposure [5], [17].

Comparison of Fig. 6 with Fig. 7 shows that the magni-
tude of the surface electric field is only slightly affected by
the air—muscle interface at the body surface. In fact, the
scale of Fig. 6 can be recovered in Fig. 7 by multiplying
the contour levels in Fig. 7 by 0.95. The degree of similar-
ity between the magnitude distribution on either side of
the body surface suggests that the electric field is largely
continuous at, and thus, tangential to the body surface
throughout the longitudinal dimension. This type of result
is also highly relevant to treatment planning and equipment
design since some regional devices which produce electric
fields that are largely perpendicular to the body surface are
believed to create excessive superficial heating due to the
electromagnetic jump conditions at such an interface [30].

Contours of |E| in transverse slices through the body
have been examined and these results illuminate the weak-
ness of an induction coil for deep-seated hyperthermia. In
such cross-sectional slices, the decrease in |E| (1o effec-
tively zero) towards the center of the patient was readily
apparent regardless of where the transverse section was
taken relative to the coil. Large portions of the central axis
of the patient had |E|less than 40 percent of the maximum
|E| on the body surface. This result occurred throughout
the length of the coil with only very small (less than 10
percent of the maximum surface |E)) electric fields existing
inside the body 10 cm beyond the ends of the coil. These
results are discussed more fully in [28].

V. CONCLUSIONS

Finite, boundary, and hybrid element formulations for
three-dimensional solutions of the Maxwell equations in
lossy dielectric media have been presented. These numeri-
cal approaches have been implemented as computer al-
gorithms for calculating three-dimensional fields in such
heterogeneous media, and-have been verified as accurately
solving the equations as posed via comparisons with known
analytic solutions. Such comparisons have been extensive
given that a variety of different tissue electrical properties,
geometries, and boundary conditions have been examined.
Representative examples have been presented. The basic
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problem formulation, while quite general, is of direct inter-
est when simulating hyperthermia treatments for cancer
therapy. The usefulness of these algorithms has been shown
through a relevant clinical example where the treatment
planning and equipment design implications of the results
that can be obtained from three-dimensional device simu-
lation have been indicated. These numerical approaches
and algorithms should provide a foundation for future
simulations of hyperthermia cancer therapy where three-
dimensional EM fields need to be calculated in detailed
body models.

Studies are beginning to emerge where detailed three-
dimensional energy deposition patterns are being calcu-
lated inside inhomogeneous three-dimensional models of
the body [18], [19]. The competitiveness of the formula-
tions described in this paper with the finite-difference
time-domain (FDTD) method has yet to be established for
three-dimensional unbounded problems containing a re-
gion of high heterogeneity. Certainly, the computational
grids used in this work ( = 300 nodes) are small relative to
those achieved in [18] and [19] (=107 cells). However,
while the numerical approaches given herein will always
result in a matrix equation (as opposed to the FDTD,
where matrices are avoided through explicit time-stepping),
iterative solution schemes should significantly reduce the
storage requirements of the FEM equations, thereby allow-
ing for greater grid resolutions. Further, these techniques
should require considerably fewer unknowns than the
FDTD for two reasons: (1) no discretization is needed in
the background medium containing the source and hetero-
geneous object, and (2) the inherent flexibility of finite and
boundary elements is such that irregular grid spacing can
readily be accommodated, which makes possible efficient
meshing of irregular geometries, regions of little or great
interest, and regions of large or small field gradients. Thus,
further work will be required to quantify the advantages
and disadvantages of the methods described herein com-
pared to those of FDTD and other numerical approaches.
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